
Trilinos Git Tutorial

Elijah Newren

Sandia National Laboratories

November 5, 2009

version: UKNOWN

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear

Security Administration under contract DE-AC04-94AL85000.

Scope

Git has a lot of cool features for developers.

But I won’t be covering them today.

I’m focusing enabling you to do it git what you now do in CVS.

Documentation

Book

Available free online: http://progit.org/book

Chapter 2 has all the basics.

Built-in
$ eg help [command]

Git versus Easy Git

Easy Git
Changes many defaults to be similar to CVS/SVN
Single-file wrapper script for Git
Designed to make Git easy to learn and use
Focuses on documentation and examples

We’ll only cover using eg

Installation

Assuming you already have a CVS checkout of Trilinos:

$ BASE_DIR/Trilinos/cmake/python/install-git.py \

-do-all -install-dir=SOME_DIR

$ export PATH=SOME_DIR/bin:$PATH

Test it out:
$ eg clone software.sandia.gov:/space/git/temp/Trilinos

The temp part of the path will disappear after the real conversion.

WARNING: You need eg >= 0.995. (Check via eg --version). Get a
new copy from

http://www.gnome.org/~newren/eg/download/latest/eg

and stick it in your $PATH.

First Time Configuration (~/.gitconfig)

Set your username
$ eg config --global user.name "Copy N. Paste"

Set your email address
$ eg config --global user.email -----@sandia.gov

Use colorized output when it makes sense
$ eg config --global color.ui true

Set your favorite diff & merge tool
(Choices include tkdiff, vimdiff, meld, kdiff3, etc.)
$ eg config --global merge.tool meld

See git config --help for more...

Migrating Work from Existing CVS Projects

Download: scp software.sandia.gov:/space/git/temp/merge-cvs-changes.py .

From within a clone of the Trilinos git repository, run:

$ merge-cvs-changes.py /path/to/Trilinos/cvs/checkout

Pay close attention to any messages the script writes.

If there are conflicts:
Edit the relevant files to remove conflict markers
Mark the file as ready to be committed by running $ eg stage FILE

We’ll cover committing these changes later in the presentation.

CVS Usage Git Usage
$ cvs checkout -d

:ext:USER@MACHINE:/PATH REPOSITORY → $ eg clone [USER@]MACHINE:/PATH

$ cvs commit → $ eg commit
$ eg push

$ cvs [-q] update [-dP] → $ eg commit # To allow backout
$ eg pull

$ cvs update → $ eg commit # To allow backout
$ cvs commit $ eg pull

$ eg squash # To cleanup
$ eg push

$ rm FILE → $ eg revert FILE
$ cvs update FILE

$ cvs -H COMMAND → $ eg help COMMAND

$ cvs status → $ eg status

$ cvs -nq update → $ eg status

$ cvs diff -u → $ eg diff

$ cvs add FILE → $ eg add FILE-OR-DIRECTORY

$ cvs rm [-f] FILE → $ eg rm FILE-OR-DIRECTORY

You’re kidding, right? → $ eg mv FILE-OR-DIR NEWPATH

$ cvs log FILE → $ eg log [FILE-OR-DIR]

version: UKNOWN

Cloning a Repository

$ eg clone software.sandia.gov:/space/git/temp/Trilinos
Initialized empty Git repository in /home/newren/Trilinos/.git/
remote: Counting objects: 442849, done.
remote: Compressing objects: 100% (93158/93158), done.
remote: Total 442849 (delta 340106), reused 442746 (delta 340033)
Receiving objects: 100% (442849/442849), 438.01 MiB | 11198 KiB/s, done.
Resolving deltas: 100% (340106/340106), done.
Checking out files: 100% (29405/29405), done.

Each “clone” in Git is a full repository.

Network operations: clone, fetch, pull, push

Local operations: everything else (status, diff, log, commit, merge, branch, tag, etc.)

Switching and Creating Branches

List existing branches:
$ eg branch

Switch to another branch:
$ eg switch trilinos-release-10-0-branch

Create a new local branch, giving it a starting point of origin/master:
$ eg branch mybugfix origin/master

Gitk — viewing history, replacing Bonsai

$ gitk &

Dialog on right from View→New View (or press F4).

Adding, Moving and Deleting Files

Add a file
$ eg add foo.C

Add directory of files (recursive)
$ eg add somedir/

Rename (Move) a file
$ eg mv foo.C bar.C

Remove a file
$ rm foo.C
OR
$ eg rm foo.C

Reverting File Modifications — revert

eg revert [--since COMMIT] FILES-OR-DIRECTORIES

COMMIT — revision specifier, defaulting to last commit

Examples:

$ eg revert packages/PyTrilinos/CMakeLists.txt

$ eg revert --since origin/master packages/WebTrilinos

Note: This replaces the rm <filename>; cvs update <filename>
sequence used in CVS.

Recording Changes Locally

$ eg commit
Follow the Git Convention

Short, one-line summary
blank line
detailed message

Several git commands work best with this format
No templates, No test vouchers

Slightly improved Tpetra::CrsGraph import/export support.

Previously the Tpetra::CrsGraph methods which support
import/export operations insisted that neither the source nor
destination graph had been fillComplete’d. Now that has been
slightly relaxed such that it is ok if the source graph has been
fillComplete’d, but the destination graph must still be in the
pre-fillComplete state.

Recording Changes Locally

Initial State:

main repository

A master

Local clone

Recording Changes Locally

After cloning and committing two sets of changes:

main repository

A master

Local clone

A

B

C master HEAD

origin/master

Getting State Info — status

Unlike cvs, the status command is brief, fast, and useful. You should get
into the habit of running it.

$ eg status
(On branch master)
(Your branch is ahead of ’origin/master’ by 1 commit.)
Changed but not updated ("unstaged"):

modified: README
modified: packages/aztecoo/src/AztecOO.cpp
deleted: packages/epetra/src/Epetra_Vector.h

Unknown files:
notes.txt

Getting State Info — diff

eg diff [options] FROM TO -- PATHS

FROM - revision specifier, defaulting to HEAD

TO - revision specifier, or the working copy if not specified

Examples:

See the changes between HEAD and the working copy:
$ eg diff

See the changes since origin/master in the working copy:
$ eg diff origin/master

See the changes between master~1 and master:
$ eg diff master~1 master

See the changes to epetra since master~2:
$ eg diff master~2 -- packages/epetra

Getting State Info — diff

Diff has various forms of high level statistics:

eg diff --name-only # Just list the names of the changed files

eg diff --name-status # List files that changed and the type of change

eg diff --stat # List files that changed and lines added and removed

eg diff --dirstat # List directories by percentage of line changes

eg diff --shortstat # List the overall line change count

Sidenote: eg log also accepts these same arguments, plus -p (for showing
patches with the commit message), in addition to having all the same search
capabilities that gitk has.

Getting State Info — log

Initial state after eg fetch

Local clone

A

B

C master HEAD

D origin/master

Getting State Info — log

$ eg log

Local clone

A

B

C master HEAD

D origin/master

log output

commit message for A

commit message for B

commit message for C

Shows all commits in master

Getting State Info — log

$ eg log origin/master..master

Local clone

A

B

C master HEAD

D origin/master

log output

commit message for B

commit message for C

Shows all commits in master that are not in origin/master

Getting State Info — log

$ eg log master..origin/master

Local clone

A

B

C master HEAD

D origin/master

log output

commit message for D

Shows all commits in origin/master that are not in master

Getting State Info — log

$ eg log origin/master...master

Local clone

A

B

C master HEAD

D origin/master

log output

commit message for B

commit message for D

commit message for C

Shows all commits that are in exactly one of origin/master and master

(log output is ordered by date)

Squashing Commits together

Commit early, commit often, may result in lots of “bad” commits:

Local repository

A

B

C

D

E

origin/master

master HEAD

You can use eg rebase -i [--since origin/master] to
selectively combine, reorder, drop, split, or edit commits.

Squashing Commits together

$ eg squash [--against origin/master]

Local repository

A

B

C

D

E

origin/master

BCE∗ master HEAD

You can use eg rebase -i [--since origin/master] to
selectively combine, reorder, drop, split, or edit commits.

Collaboration – Pulling & Pushing Commits

Pulling changes down (“updating”):
$ eg pull [repository [branch]]
Updating 22d0ed8..e12a6c8
Fast forward
packages/zoltan/src/CMakeLists.txt | 1 +
packages/zoltan/src/order/hsfcOrder.c | 250 +++++++++++++++++++++++++++++++++
packages/zoltan/src/order/hsfcOrder.h | 25 ++++
packages/zoltan/src/order/order.c | 21 ++-
4 files changed, 292 insertions(+), 5 deletions(-)

Pushing your commits to publish them:
$ eg push [repository [branch]]
Counting objects: 5, done.
Delta compression using 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 418 bytes, done.
Total 3 (delta 2), reused 0 (delta 0)
To software.sandia.gov:/space/git/temp/Trilinos
350cc6e..0583c4e master -> master

“New unknown files”

If you see:

$ eg commit
Aborting: You have new unknown files present and it is not clear
whether they should be committed. Run ’eg help commit’ for details.
New unknown files:
random.C

then eg is warning you that you may have forgotten to add a new file (in
this case random.C) that you created.

If you:
Want the file(s) included: use eg add

Want to commit without the file(s): Pass the -b (or
--bypass-unknown-check) flag to eg commit. Using this flag
also prevents eg from warning you about these new files in
subsequent commits.

“both staged and unstaged changes”

If you see:

$ eg commit
Aborting: It is not clear which changes should be committed; you have
both staged (explictly marked as ready for commit) changes and unstaged
changes present. Run ’eg help commit’ for details.

then eg is warning you that you have marked some files as ready for
commit (with add or stage) but not others.

If you:
Want to commit all files you changed: pass the -a flag to eg
commit.
Want to commit just the staged changes: pass the --staged flag to
eg commit.

you may want to run eg status to see which changes are staged.

“Entry <filename>...Cannot merge.”

If you see (a minor variation of):

$ eg pull
Updating 22a7936..8d7e7a1
error: Entry ’packages/tifpack/src/Tifpack_IlukGraph.hpp’ not uptodate.
Cannot merge.

then eg is warning you that you have uncommitted changes that conflict
with changes someone else has made, and proceeding would not be
reversible.

Either:
Commit your changes first (eg commit), then repeat the pull
Stash your changes away: run eg stash [save <stash
description>], then repeat the pull, then reapply your changes
(eg stash pop [<stash description>]).

“non-fast forward”

If you see:

$ eg push
To software.sandia.gov:/space/git/temp/Trilinos
! [rejected] master -> master (non-fast forward)
error: failed to push some refs to ’software:/space/git/temp/Trilinos’

then git is using weird language to tell you that your project is not
up-to-date. You’ll need to first pull down the commits you don’t have yet.

Extra Merge Commit(s)

If you see:

$ eg push
...
The commit:

[commit message information here]

Looks like it was produced by typing ’eg pull’ without the --rebase
option when you had local changes. Running ’eg pull --rebase’ now
will fix the problem. Then please try, ’eg push’ again. Please see:

https://software.sandia.gov/developer/git/hip/ExtraMergeCommits.html

error: hooks/pre-receive exited with error code 1
To software.sandia.gov:/space/git/temp/Trilinos
! [remote rejected] master -> master (pre-receive hook declined)
error: failed to push some refs to ’software:/space/git/temp/Trilinos’

then you have a commit we consider ’useless’ that you should remove before pushing.

You can run eg squash to get rid of these commits (and combine all your local unpushed commits
into one), or run the command suggested by the error message. You can follow the suggested link
to learn more abou this issue.

“pull[ed] without telling me which branch”

If you see:

$ eg pull
You asked me to pull without telling me which branch you
want to merge with, and ’branch.master.merge’ in
your configuration file does not tell me either.
...

(the full error message takes a full screen) then git does not know which
branch you are trying to track, probably because you created a new
branch without specifying a remote branch as a starting point.

Simply tell git which branch you want the active branch to track:
$ eg track origin/master

Merge Conflicts

If during a pull (or merge or rebase) you see:

Auto-merging packages/amesos/src/Amesos.cpp
CONFLICT (content): Merge conflict in packages/amesos/src/Amesos.cpp

then you changed the same file someone else did and have conflicts.

You can either

Go back (only safe if you committed or stashed before pulling): eg reset
--working-copy ORIG_HEAD.

or

Edit files to remove conflict markers

Tell Git that you have resolved the conflicts: eg stage <filename>

Continue/complete the operation (for merges: eg commit; for rebases: eg rebase
--continue)

NOTE: You can run eg status to see which files are unmerged (i.e. have conflicts), see which
type of operation you are in the middle of, and get a pointer to help for resolving conflicts.

Merge Conflicts

$ eg status
(On branch master)
(Your branch and ’origin/master’ have diverged,)
(and have 1 and 1 different commit(s) each, respectively.)

(YOU ARE IN THE MIDDLE OF A MERGE; RUN ’eg help topic middle-of-merge’ FOR MORE INFO.)

Changes ready to be committed ("staged"):
new file: packages/tifpack/src/Tifpack_CreateOverlapGraph.hpp
modified: packages/tifpack/src/Tifpack_OverlapGraph.hpp
modified: packages/tifpack/test/unit_tests/CMakeLists.txt
new file: packages/tifpack/test/unit_tests/Tifpack_UnitTestCreateOverlapGraph.cpp
new file: packages/tifpack/test/unit_tests/Tifpack_UnitTestHelpers.hpp
new file: packages/tifpack/test/unit_tests/Tifpack_UnitTestOverlapGraph.cpp
modified: packages/tifpack/test/unit_tests/Tifpack_UnitTestTemplate.cpp

Changed but not updated ("unstaged"):
unmerged: packages/tifpack/src/Tifpack_IlukGraph.hpp

(YOU ARE IN THE MIDDLE OF A MERGE; RUN ’eg help topic middle-of-merge’ FOR MORE INFO.)

CVS Usage Git Usage
$ cvs checkout -d

:ext:USER@MACHINE:/PATH REPOSITORY → $ eg clone [USER@]MACHINE:/PATH

$ cvs commit → $ eg commit
$ eg push

$ cvs [-q] update [-dP] → $ eg commit # To allow backout
$ eg pull

$ cvs update → $ eg commit # To allow backout
$ cvs commit $ eg pull

$ eg squash # To cleanup
$ eg push

$ rm FILE → $ eg revert FILE
$ cvs update FILE

$ cvs -H COMMAND → $ eg help COMMAND

$ cvs status → $ eg status

$ cvs -nq update → $ eg status

$ cvs diff -u → $ eg diff

$ cvs add FILE → $ eg add FILE-OR-DIRECTORY

$ cvs rm [-f] FILE → $ eg rm FILE-OR-DIRECTORY

You’re kidding, right? → $ eg mv FILE-OR-DIR NEWPATH

$ cvs log FILE → $ eg log [FILE-OR-DIR]

version: UKNOWN

	Preliminaries
	Scope
	Documentation
	Easy Git
	Installation
	First Time Setup
	Migrating Changes from Existing CVS Projects

	When Things Go Well: The Basics
	Cheet Sheat: CVS Git
	Clone --- Getting your Copy
	Switch, Branch --- Dealing with Branches
	Gitk --- a local Bonsai replacement, and history viewer
	Add, Mv, Rm --- Adding/Renaming/Deleting Files
	Revert --- Reverting Uncommited File Modifications
	Commit --- Recording Changes Locally
	Status, Diff, Log --- Getting info
	Squash
	Push, Pull

	When Things Go Wrong: Common Error Messages
	``New unknown files''
	``You have both staged and unstaged changes present''
	``Entry <filename> not uptodate. Cannot merge.''
	``Non-fast forward update''
	Extra Merge Commit(s)
	You ``pull[ed] without telling me which branch to merge with''
	Merge Conflicts

